
Linker Scripting and Linux Shared Library Versioning
Demystifying linker scripting and shared library exports.

Matt Bisson — cyberbisson.com
November

Shared library versioning is a powerful tool, allowing your
library to make new features available without breaking
older consumers of them. The problem is — as I’ve no-
ticed through the years — GCC linker scripting seems like
witchcraft to many who’d otherwise use it, and only those
with tribal knowledge can maintain the library. I agree: this
information can be hard to find, and hard to understand. In
this article, I’m going to give what I think is a recipe book for
using LD version scripting to apply shared library versioning,
and keep your library alive and compatible for years.

I write this today because I have personally created
external-facing libraries from soup to nuts using these ver-
sioning facilities, and I wouldn’t say I had an “easy” time fig-
uring out all the details. Hopefully this will help the next
person get going a little more quickly. There is a lot here, so
please feel free to skip around with the Table of Contents.

 But… Why?
If you already know the “why,” skip right on down to the
how(§)…”

You can certainly do your own versioning scheme for your
library, but that gets very messy, very quickly! In my obser-
vation, people often choose to do one of the following:

. Create new functions with their own names, distinct from the
old ones. So instead of CreateFile(), now you have
CreateFileEx() with different behavior. What a mess,
though. What happens if you need to add a third in-
compatible modification? Do you keep the same name
if the inputs are the same, but the behavior is different?
Also — and this is important, too — don’t you want to
choose what the names are in the API? Now your names
not only have to describe what they’re doing, but they
have to include historical context, like “V1” in the name.

. Create a completely new library for a new version. Each “dot”
release gets its own library file on the system. This might
seem like an easy path in the short term, but every time
you make a minor breaking change to an interface, you
will take a deep sigh, and think about all the work you’ll
have to do to create a brand new library. Corners will
undoubtedly be cut. Plus, what you put onto the op-
erating system will have many redundant copies of exe-
cutable code that has not changed (see the different
JRE versions on your computer: one for each software
package that consumes its own specific version). I doubt

that every single function has changed from one API ver-
sion to the next. Further, if you ever want to build all
the supported libraries (which you probably do), then
you either need to set old versions of the source code in
stone, or you need to pepper your code with preproces-
sor checks to ensure old versions remain unmodified.

. Emit API bindings from a definition language, and manually
accommodate differences. This is a decent approach, but
it can demand that you build up a lot of infrastructure
before you can even get off the ground. Often times, too,
you have rules about how to add or remove parameters
that require manual intervention, as well the need for
some initial “negotiation” step that happens at run-time
between the library and the client. Perhaps an RPC/IPC
mechanism has to facilitate this all, as well.

. Just ignore it — nothing but the latest version is OK. Gee…
that’s pretty harsh! Imean, if you can do it, go ahead, but
stable platforms will lead to more rapid development
later on.

Conversely, shared library versioning pretty much Just
Works™ — you write your linker script, defining a version
and what symbols it comprises. You don’t need to give funny
version-specific names to your exports, because the linker
takes care of this under the covers. You don’t need to mar-
shal data through an IPC, because linkages are just dlopen()
and dlsym(). You build everything from one set of source
files (if you choose), and you don’t need to involve the pre-
processor for anything. Your OS deployment won’t have any
redundant copies of anything. Yes, there are a few rules to
avoid the “gotchas,” but honestly, not too much.

 How Does This Work?
Let me begin by stating that shared library versioning is not
“easy.” It requires some discipline to get it right, because you
don’t want to be adding new functionality that inadvertently
blows up the behavior of old functionality. It’s sometimes
tricky to know what symbols need a version bump (or not!),
and what design choices may limit you in the future. Do
know, however, that almost all the system libraries in Linux
use this functionality, so it’s not only possible and reasonable
to do this, but you are not alone.

As mentioned, it’s the GNU linker’s scripting language
that drives shared library versioning. Historically speaking,

https://cyberbisson.com/

this is based on Solaris’s shared library versioning schemes
(the GNU reference actually directs readers to the Solaris doc-
umentation), but the GNU modifications avoid a particular
situation where an application runs for some time, then fails
unexpectedly when they load an incompatible library. The
GNU dynamic linker quickly checks the stated symbols as it
initiates the process’s execution. The documentation for li-
brary scripting is not as clear as it could be, in my opinion.
Here are some references:

• See Chapter of The LD manual (or info module).

• Specifically the VERSION command.

• Section of Ulrich Drepper’s How-To.

This is the same compatibility scheme that GNU libc uses,
though, so there is a lot of “prior art” for empirical examples.
You can check out the GLIBC source code repository for files
named “Version.”

. What Does the Linker Script Do?
Speaking specifically of the versioning section of the linker
script, the script directs the linker to modify the visibility and
associated version for shared library exports. That’s it. Impor-
tantly (for reasons to be explained shortly), the script does
not consider any symbol with an “@” in its name. During
processing, it:

. … gathers any symbols mentioned within a version
(“globbing” supported), and if specified as “local,” hides
them, if specified as “global,” makes them visible, ap-
pending the version name to the end.

. … moves through the dependent versions recursively,
carrying forward any global symbols from the depen-
dency, and dropping any local ones. It continues to
match what has not already been matched.

. If no versions exist, but an anonymous “version” exists,
visibility changes, as with named versions, but all sym-
bols remain in the default, unnamed version. Named
and anonymous versions do not coexist.

. Any symbols that do not match the above processes land
in the default unnamed version with their already spec-
ified visibility.

Since this occurs at the linking phase, the “‐fvisibility”
compilation flag still takes effect. This flag marks symbols as
visible or hidden during .o compilation, and the linker sub-
sequently gathers all the visible symbols from the .o file for
consideration. If the default is “hidden,” the “visibility”
attribute must decorate the symbol, and it must be set to
“default.” The __attribute__ keyword overrides any com-
piler flag to the contrary.

The dynamic linker uses the “@” token to label the sym-
bols. Thus, a symbol, foo targeted to a specific version (e.g.,
VER_1.0) will appear in the executable as “foo@VER_1.0.” The
“@@” token not only indicates the version, but indicates that
the given version is the default for any compilation that does
not explicitly specify one. The foo for VER_1.1 and unspecified
versions (during compilation) appear as “foo@@VER_1.1.”

. Additional Methods of Versioning
The linker script allows us to put named symbols into ver-
sions as we please, using explicit and dependent versions, and
using wild-cards. Replacing a symbol is not trivial, however,
since the script does not allow renaming of symbols. To re-
name a symbol, this implies that you have two symbols, not
one — both named foo — that exist in separate versions. If
the linker finds the same symbol twice, it reports an error.

Because of this, we need to fix-up the compilation unit it-
self so that it provides a uniquely named C symbol, and then
manually renames the symbol to onewith an “@” in the name.
Recall that “@” is a special character that indicates a versioned
symbol, and is one that the linker script cannot affect.

GCC and Clang provide the “.symver” directive. It takes
the form:
.symver symbol, name@[@]ver

Wrap this in an __asm__ block in C/C++ code.
Using the example from the previous section, assume we

have a “fooV1” C symbol to inject into the “VER_1.0” version
as the shared library export named “foo.” This export goes di-
rectly from the C code into the shared library, without being
altered by the linker script:
__asm__(".symver fooV1, foo@VER_1.0");

. Version Scripting Syntax
The syntax is fairly straightforward. Version specifications in
the script take this form:
VERSION ::= NAME '{' (SCOPE? SYMBOL−LIST)* '}' NAME? ';'

::= '{' (SCOPE? SYMBOL−LIST)* '}' ';'

SCOPE ::= ('global' | 'local') ':'
SYMBOL−LIST ::= PATTERN ';' SYMBOL−LIST*
NAME ::= [A−Za−z_][A−Za−z0−9_]*
PATTERN ::= '"' [A−Za−z0−9_?*]+ '"'

::= [A−Za−z0−9_?*]+

A version can have a name, or it cannot. If any version
is named, all versions must have names. The named VERSION
form creates a dependency by specifying the version onwhich
it depends after the final closing bracket. This brings the ex-
ports from the dependency into the dependent version.

Labels indicate scoping with the “global” or “local” key-
words, but if symbols fall outside the scope labels, they are
global in scope. Each symbol terminates with a semicolon,
and may be surrounded by double-quotes to prevent glob-
bing.

https://sourceware.org/binutils/docs/ld/Scripts.html
https://sourceware.org/binutils/docs/ld/VERSION.html
https://akkadia.org/drepper/dsohowto.pdf

Note that this is a simplification for C-only exports, but the
version script does indeed support things like “extern "C++"
...,” and symbols utilizing valid, un-mangled C++ names.

. Practical Application
The following example illustrates how to create a library us-
ing the techniques described in the prior sections.

Let’s first define the API with some function declarations.
In a public header, we can simplify the coder’s life with some
quick macros. Here’s one for marking a function as an ex-
ported symbol from shared library:
#define MY_API_EXPORT __attribute__((visibility ("default")))

Now let’s make anothermacro to simplify exporting a sym-
bol, specifying a particular version:
#define MY_API_EXPORT_MAPPING(sym, name, ver) \

__asm__(".symver " #sym "," #name "@MY_API_" #ver)

Here’s a quick sample interface we’ll use to explore some
scenarios.
MY_API_EXPORT void foo(void);
MY_API_EXPORT void bar(void);
void undecorated(void);
__attribute__((visibility ("hidden"))) void hidden(void);

MY_API_EXPORT void internal(void);
MY_API_EXPORT void unmatched(void);

So you can see we have at least a couple of exports here, but
the linker script itself is going to decide where they (most of
them, anyway) end up. Pass the following linker script to the
linker with “‐‐version‐script=<file>”:
/* Linker scripts use C−style comments only.

*
* Exported symbols: Keep symbols grouped by module, and in alphabetical

* order. */
MY_API_1.0 {

global:
bar;
/* foo: REPLACED in v1.1. */
hidden;
non_existant; /* Not defined in source; no error, though. */
undecorated;

};

MY_API_1.1 {
global:

foo; /* REPLACES v1.0 API. */
} MY_API_1.0;

MY_API_INTERNAL /* Un−versioned. */ {
global:

internal;

local: *;
};

Given the header file declarations, and what’s in
the linker script, we can tell that this library supports
“MY_API_1.0” and “MY_API_1.1” for public consumption,
and “MY_API_INTERNAL” with no real compatibility guaran-
tees. We can also surmise what goes where, but we’ll need
the source file to be certain. Here’s the completed picture:
void foo(void) {

/* Version 1.1 things... */
}

MY_API_EXPORT void foo_v1(void) {
/* Version 1.0 things... */

}

MY_API_EXPORT_MAPPING(foo_v1, foo, 1.0);

void bar(void) {
/* Unchanged since Version 1.0. */

}

void undecorated(void) {
/* Dependent on −fvisibility setting. */

}

void hidden(void) {
/* Explicitly hidden in the declaration! */

}

void internal(void) {
/* Internal, un−versioned functionality. */

}

void unmatched(void) {
/* Marked as "visible", but not claimed by any version,

* so it falls to the "local" section, and is hidden. */
}

Given all these permutations, we expect these results:

• foo(): Explicitly visible, unclaimed by MY_API_1.0, it
fell to, and was claimed by MY_API_1.0.

• foo_v1(): Explicitly visible, and explicitly renamed to
foo in the MY_API_1.0 version. The linker script never
touched it because it had an @ in the name.

• bar(): Explicitly visible, and claimed by the
MY_API_1.0.

• hidden(): This was hidden during compilation, so it
was never visible to the linker, and it will not be ex-
ported, despite being mentioned in the version script.
The linker does not raise an error when it cannot find a
symbol specified in the linker script.

• undecorated(): This is not explicitly exported in the
source, so it depends on the ‐fvisibility setting. If it’s
visible, it will appear in MY_API_1.0; if it’s not visible, it
will not be exported.

• internal(): This function was not claimed by the
first two versions, so it falls to MY_API_INTERNAL, which
claims it.

• non_existant: Does not exist, and wasn’t part of any
object being passed to the linker, but it was specified in
the linker script. The linker silently ignores this.

• unmatched(): This was explicitly marked for export in
the source, but no version claimed it. It falls to the “*”
glob under local, and is not exported.

The .dynsym table in the shared library should look some-
thing like this:
19: 00000000 0 OBJECT GLOBAL DEFAULT ABS MY_API_1.1
20: 00000000 0 OBJECT GLOBAL DEFAULT ABS MY_API_INTERNAL
25: 00000000 0 OBJECT GLOBAL DEFAULT ABS MY_API_1.0
6: 00001143 31 FUNC GLOBAL DEFAULT 12 foo@MY_API_1.0
7: 00001124 31 FUNC GLOBAL DEFAULT 12 foo@@MY_API_1.1

10: 00001105 31 FUNC GLOBAL DEFAULT 12 bar@@MY_API_1.0
12: 000011a0 31 FUNC GLOBAL DEFAULT 12 internal@@MY_API_INTERNAL

AnyAPI consumer that links against this (referring to com-
pile time, here) finds the . version of foo. After installing on
the system, that client forever links against “foo@MY_API_1.1.”
Any applications that predate the . version link specifically
against “foo@MY_API_1.0,” and will find the “compatibility”
version we coded up under foo_v1() in the C source.

I want to take a brief detour here to mention that you do
not need to export the symbols for the special library start-up
and shut-down function (__attribute__((constructor)))
and __attribute__((destructor)), respectively). The dy-
namic linking subsystems take care of this for you, and there
are no compatibility concerns when linking against an older
executable.

 Guidance
Now that you have a living example of how shared library
versioning and GCC linker scripting works, let’s talk about
what (I think) you should do in a more generic sense.

. Best Practices
Let’s talk about how to make life simpler.

.. Minimize (or eliminate) publicly visiblememory lay-
outs

First and foremost, any concrete details you expose in your
public header files are going to be a liability later on down
the line. Things like structures, enumerations, and typedefs
are not things that the library “exports,” and therefore, you
cannot version them.

Consider the following:
struct func_info {

char const *some_string;
char const *something_else;

};

MY_API_EXPORT void use_info(struct func_info const *);

Now, we assume that a v. client calls the function with:
use_info(&(struct func_info){.some_string = "input",

.something_else = "other"});

To support this v. API, we now need to ensure that subse-
quent changes to the structure do not move or remove these
two pointers from the th and th byte offsets in memory. The
v. consumer of the API forever arranges the memory in this
way — that’s hard-coded into the executable. This means:

. Never add fields to the beginning of a public structure,
or insert them between existing fields.

. Never remove a field from the structure.

. Even if the functions that access these structures do not
change their signatures, they must access the data in a
way that is appropriate for the API consumer’s version.

For example, do not require a populated third field with-
out increasing the version of such a function.

If you ever make an incompatible change to a public struc-
ture, you then have to preserve the original structure as
an internal compatibility structure, and provide compatibil-
ity versions of any exported functions that used that orig-
inal structure (e.g.: “use_info@MY_API_1.0” supports the
old structure, and “use_info@@MY_API_1.1” understands the
new one).

All the same complexity applies to enumerations. Do not
insert changes to enumeration constants, do not re-use a nu-
merical constant for a different meaning, and do not remove
constants.

Since functions are things we can version, I propose the
following rule: hide any structures behind functions. In a simple
case, this can look like a function that simply takes a number
of parameters:
use_info(/* some_string= */ "input",

/* something_else= */ "other");

…or it can lookmore like an opaque handlewith a creation
function, and mutators or accessors, as needed:
typedef struct func_info *info_handle;
typedef struct func_info const *const_info_handle;

MY_API_EXPORT info_handle make_info(
char const *some_string,
char const *something_else);

MY_API_EXPORT void free_info(info_handle);
MY_API_EXPORT char const *info_get_some_string(const_info_handle);
MY_API_EXPORT void info_set_some_string(info_handle, char const *);

MY_API_EXPORT void use_info(info_handle);

Depending on what you need to access, what you need to
set, and how frequently you update the consumers of that
data, this may be worth the effort, or it may feel like total
overkill. I have personally done things both ways at vari-
ous times, and have found that there’s a lot less “explaining”
and “evangelizing” when handles are opaque, and access is
through functions. In a larger project, it can be hard to ob-
serve every modification, so using direct structures allows for
a higher probability of mistakes just makes sense.

.. Callbacks are not versioned: take special care

Although it may initially seem different, this is effectively the
same problem as a publicly exposed structure. If your API
requires a callback, the type that defines that callback is not
versioned. Consider the following:
typedef void (my_callback)(char const *data, int a);
MY_API_EXPORT void do_op(my_callback *on_complete);

A v. client will dutifully pass a function that matches that
signature, look at the pointer, and all is well. If, however, v.
changes the type to something like “int(int a),” the result
will be a v. client accessing memory at whatever the passed-
in int has for a value, using an “int a” from the stack that
was not provided by the caller, and never setting the return
value for a caller that expects an integer!

For this reason, utilize the same solution as proposed for
updating public structures. Create an internal type for the
original callback type, then create a legacy version of do_op()
for v. clients that understands how to execute the old call-
back. The new version can do whatever it likes from there on
out.

.. Limit inline functions

Functions in the public headers that are marked inline are
built directly into the executable that consumes your library.
They are immune to the help that shared library version-
ing provides. As the (C) inline functions are limited to
only functionality exposed through the public headers —
functionality that the library client themselves can use —
simply following proper shared library versioning practices
should protect the consumers. This is a slightly different story
for C++, however, since encapsulation allows inline member
functions to affect internal details — those in the private
section—which (non-Machiavellian) library consumers can-
not normally access. Take extra caution here, and exercise the
same caution with C++ classes as you did with C structures.
This can be a very tricky task with inheritance, and so on.

.. Explicitly label all library exports

I strongly recommend forcing people to mark shared library
exports in the public headers with something similar to the
example export macro above, “MY_API_EXPORT.” Tell the com-
piler to mark all symbols with “‐fvisibility=hidden” to
force the issue. This is a useful warning sign for coders and re-
viewers, and also serves as a kind of “code as documentation”
for readers.

.. Always create an internal version (containing local)

If you have multiple libraries, all deployed at the same time,
having some “private” exports may help you. If, from its in-
ception, you structure your script so the internal version is
always last in your script, and contains the “local: *” state-
ment, this means less work in the future. Without the local
directive being there, you have to keep moving it manually
into new versions as you add them. This is a very minor an-
noyance, but forgetting to place the directive can lead to con-
fusing linker errors.

.. Leave obsolete declarations and export information
out of public headers

Assuming you do not want your library clients to refer to
legacy functions — only the latest ones — leave the legacy
functions out of the public headers. In the examples above, I
did this with foo_v1(). This is clutter to the API consumer,
and possibly provides functionality you don’t want to expose.

You won’t even need a declaration for it, since the .symver di-
rective does all the work to explicitly add the symbol to the
shared library.

.. Be diligent about documenting when a symbol
moves from version to version

Whenever I move a symbol from one version to another
(e.g., updating a function from an existing version), I like to
put a formulaic comment in place where the symbol resided
originally. Notice the example, where we move foo into
MY_API_1.1. Under MY_API_1.0, there is a comment that
reads, “foo: REPLACED in v..” Just a simple comment like
this helps the reader know where symbols should show up
in the exported symbol table, and when new symbols were
added.

.. Take extreme cautionwhen changing versions across
branches

Things can get very hairy, very quickly when making changes
to non-trunk branches.

To use a concrete example, an API at version . on trunk
should contain the exact same functionality as API version . on
“prod/8.0.” This means that if prod/8.0 is currently at API
version ., you can’t just cross-port API version . over from
trunk, but youwould have to cross-port absolutely everything
from . and . to the branch! Further modification to .
on trunk, too, would need to arrive on prod/8.0. Ideally,
the branches would be in lock-step before any new API, and
the API that you place will be unchanged after that point —
subsequent changes arrive in another new API version. You
can see how tricky this branch mobility can be, so it is best to
avoid it altogether.

.. Build a version number into your library name

In an extreme, forward-looking sense, building a version
number into the name of your library can save you some grief.
Assuming you decide that a new version of the library cannot
be kept compatible with older versions, you can simply bump
the version number on the file. You can then choose to set the
old library in stone, or not create it at all, leaving clients to
go find the new version, and integrate with it. Definitely do
this from the very start.

.. Name your shared library script “.ld”

I have noticed some conventions, like in GLIBC, where the
scripts are named Version, and are placed in various sub-
directories. The only modification I might make to this is
to suffix the files with “.ld” so it’s slightly easier to make file-
type associations with these files. If you have a single library
per script, too, it makes sense to give a file name that reflects
that library. These are very minor points, though.

. Checking Your Work
You can verify your changes with a tool like objdump or
readelf.
> objdump −T libtestlib.so.1 | grep foo
0000000000001105 g DF .text 000000000000001f MY_API_1.1 foo
0000000000001124 g DF .text 000000000000001f (MY_API_1.0) foo

The objdump command reports single-versionmappings with
a “()” around the version name, and default mappings with-
out.
> readelf −−dyn−syms libtestlib.so.1 | grep foo

8: 0000000000001105 31 FUNC GLOBAL DEFAULT 12 foo@@MY_API_1.1
9: 0000000000001124 31 FUNC GLOBAL DEFAULT 12 foo@MY_API_1.0

The readelf command uses the familiar “@” for single-
version mappings, and “@@” for default version mappings. In
both commands, we can see foo mapped to MY_API_1.0 for
those compiled directly against it (only), and to MY_API_1.1
for anyone else.

The same applies to checking the executable, if you want
to ensure that it uses the versions you expect:
> readelf −−dyn−syms testexe | grep MY_API

3: 0000000000000000 0 FUNC GLOBAL DEFAULT UND bar@MY_API_1.0
5: 0000000000000000 0 FUNC GLOBAL DEFAULT UND foo@MY_API_1.1

Looks like we’ve got a . API consumer!

 Summary
Maintaining backward compatibility is difficult, but worth
the effort. For Linux applications, I recommend giving seri-
ous consideration to the shared library versioning available
via LD linker scripting. You must remain cognizant of a
few important problems with shared library versioning, but
I don’t believe this is any different with almost any other ver-
sioning scheme. Remember:

• Once released, a version of the API should never change,
except for bug fixes.

• Limit what is visible to the API client. Never remove or
change existing fields and enumeration values that the
library client can access directly.

• Create a new version when anything in the behavior or
memory layout changes.

	But… Why?
	How Does This Work?
	What Does the Linker Script Do?
	Additional Methods of Versioning
	Version Scripting Syntax
	Practical Application

	Guidance
	Best Practices
	Minimize (or eliminate) publicly visible memory layouts
	Callbacks are not versioned: take special care
	Limit inline functions
	Explicitly label all library exports
	Always create an internal version (containing local)
	Leave obsolete declarations and export information out of public headers
	Be diligent about documenting when a symbol moves from version to version
	Take extreme caution when changing versions across branches
	Build a version number into your library name
	Name your shared library script ``.ld''

	Checking Your Work

	Summary

