
When Empty Base Optimization Goes “Wrong”
This wasn’t actually working as designed.

Matt Bisson — cyberbisson.com
February 

Occasionally, we use C++ inheritance to “tag” a class for some
later purpose, or perhaps to introduce a functional change
without copying code (e.g., boost::noncopyable). When the
inherited class has no data, we (quite reasonably) expect to in-
cur no run-time size overhead, due to Empty Base Optimiza-
tion (EBO), but there is one surprising case where we must
take care, or unintentionally waste memory. In this article,
let’s explore the issue, and how to guard against it.

 The Problem
When you write a class with nothing in it, it is very surprising
to do some compile-time check, and find that objects are pay-
ing a penalty for using that empty class. The C++ Standard
(C++; §...) defines what “empty” really means, but it’s
generally what you’d expect: if a class has no fields and no vir-
tual functions (ignoring a few other qualifications), you can
pretty much expect it to be empty. This means that when one
derives from the class, the base should consume zero bytes of
space — EBO — but there’s a wrinkle (emphasis, mine):

Two objects with overlapping lifetimes […] may
have the same address if one is nested within the
other, or if at least one is a subobject of zero size and
they are of different types otherwise, they have dis-
tinct addresses and occupy disjoint bytes of storage.

This verbiage is dense with meaning, but essentially, if one
has a zero-length object at the start of a structure, and a zero-
length object as the base class, and they are the same type,
then the compiler must give space to the base class so it has a
distinct memory address. Consider an example:
struct empty_class { };

struct smaller_class : empty_class {
long long int m_x[2];

};

struct bigger_class : empty_class {
smaller_class m_sc;

};

struct biggest_class : empty_class {
bigger_class m_bc;
smaller_class m_sc;

};

First, what are we trying to have the sizes of these objects
be? The obvious expectation is:

• empty_class: zero objects, zero size (caveat: sizeof
must indicate a size of  byte).

• smaller_class: two -bit integers should be  bytes
total.

• bigger_class: since this just wraps smaller_class, it
must be  bytes as well, right?

• bigger_class: combining the first two classes, logically
means this one is supposed to be  bytes.

When we dump the AST (in this case from Clang¹), we
can see that some of the assumptions run into that paragraph
from the Standard:

*** Dumping AST Record Layout
0 | struct empty_class (empty)

| [sizeof=1, dsize=1, align=1,
| nvsize=1, nvalign=1]

*** Dumping AST Record Layout
0 | struct smaller_class
0 | struct empty_class (base) (empty)
0 | long long[2] m_x

| [sizeof=16, dsize=16, align=8,
| nvsize=16, nvalign=8]

*** Dumping AST Record Layout
0 | struct bigger_class
0 | struct empty_class (base) (empty)
8 | struct smaller_class m_sc
8 | struct empty_class (base) (empty)
8 | long long[2] m_x

| [sizeof=24, dsize=24, align=8,
| nvsize=24, nvalign=8]

*** Dumping AST Record Layout
0 | struct biggest_class
0 | struct empty_class (base) (empty)
8 | struct bigger_class m_bc
8 | struct empty_class (base) (empty)

16 | struct smaller_class m_sc
16 | struct empty_class (base) (empty)
16 | long long[2] m_x
32 | struct smaller_class m_sc
32 | struct empty_class (base) (empty)
32 | long long[2] m_x

| [sizeof=48, dsize=48, align=8,
| nvsize=48, nvalign=8]

The classes, empty_class and smaller_class are  and 
bytes (respectively), as expected. Notice, however, that in the
other two classes, we see empty_class as the base class, then
the left column (thememory offset from the start of the struc-
ture) goes up to . This is because the first field inherits again
from empty_class. It gets even worse for biggest_class,
which retains the padding from bigger_class, and adds its
own before it. The size of bigger_class is  instead of ,
and biggest_class is  instead of !

¹This is pretty easy in Clang: just invoke “clang++ ‐cc1 ‐emit‐llvm
‐fdump‐record‐layouts from.cpp > dest.log”. This will work for C or
C++. With GCC, you can get similar output with the ‐fdump‐lang‐all flag,
but it only applies to C++. For Clang, if you have code of any complexity,
you probably need to pre-process it first, then analyze the pre-processed file.
The “CC” phase of compilation does not generally even knowwhere to find
system headers by default.



https://cyberbisson.com/
https://www.boost.org/doc/libs/1_81_0/libs/core/doc/html/core/noncopyable.html
https://en.cppreference.com/w/cpp/language/ebo
https://en.cppreference.com/w/cpp/language/ebo
https://gcc.gnu.org/onlinedocs/gcc/Developer-Options.html

The point is this: objects in C++ are required to have their
own distinct identity. When you have two empty_class in-
stances with two different names, the reasons are obvious:
even though they have no data, one still needs to be able to
differentiate between object # and object # with the equal-
ity operator. Alas, for something like bigger_class, the base
class doesn’t have a distinct name, but it still has an identity.
Consider this example:
bigger_class o1;
void f(empty_class *o);

void g() {
empty_class *const p1 = &o1;
empty_class *const p1_sc = &o1.m_sc;
assert(p1 != p1_sc); // Fundamentally, this...

f(&o1);
f(&o1.m_sc);

}

If the compiler does not give a different address for the base
class, empty_class and for the base empty_class contained
within m_sc (a smaller_class instance), then things start to
break down. The fundamental identity of o1 and one of its
fields would be identical! Stranger still, any function like f()
would not knowwhich object it is using—probably not a big
deal for an empty class, butwe don’t know if, for example, f()
memoizes some result based on the identity of the objects it
sees.

 Just Make It Get Smaller, Please
Just to take the problem away, we could consider moving the
actual data away from the empty base class. Here, we set up
implementation classes that we can use to define the other
classes, noted by the “_impl” suffix. They do not derive from
empty_class, and therefore everything is exactly the size it’s
supposed to be:
struct smaller_class_impl {

long long int m_x[2];
};
struct smaller_class : empty_class, smaller_class_impl { };

struct bigger_class_impl {
smaller_class_impl m_sc;

};
struct bigger_class : empty_class, bigger_class_impl { };

struct biggest_class_impl {
bigger_class_impl m_bc;
smaller_class_impl m_sc;

};
struct biggest_class : empty_class, biggest_class_impl { };

To prove it, here’s what Clang says:

*** Dumping AST Record Layout
0 | struct biggest_class
0 | struct empty_class (base) (empty)
0 | struct biggest_class_impl (base)
0 | struct bigger_class_impl m_bc
0 | struct smaller_class_impl m_sc
0 | long long[2] m_x

16 | struct smaller_class_impl m_sc
16 | long long[2] m_x

| [sizeof=32, dsize=32, align=8,
| nvsize=32, nvalign=8]

Unfortunately, this actually makes life pretty complicated
for an interface of any complexity. Consider if the inter-
face to bigger_class had a function that returned an in-

stance of bigger_class — but now everything has to live
in bigger_class_impl — should it return the tagged class,
or the implementation class? Things have to be forward-
declared, perhaps, but then it has to be separate if it’s inline.
Or should it be in bigger_class, but then it’s separate from
the data in _impl. Yuck! This is certainly not a drop-in fix for
such a code-base.

So while this approach does confirm out reasoning — that
EBO is indeed affected by the repeated base class — we can
do better.

 A Much Better Answer
The solution I propose here is painfully simple. Make the
empty base class a class template. If the problem is that the
same address for two objects cannot have the same type, let’s
change the type so that it’s based on the most-derived type!
template<typename T> struct empty_class { };

struct smaller_class : empty_class<smaller_class> {
long long int m_x[2];

};

struct bigger_class : empty_class<bigger_class> {
smaller_class m_sc;

};

struct biggest_class : empty_class<biggest_class> {
bigger_class m_bc;
smaller_class m_sc;

};

The empty base class came from a class template, but a tem-
plate isn’t a “real” type until it is instantiated. By handing the
derived class to the template, the template can also perhaps
include special functions for specific classes, but this is prob-
ably not the point. The point is that at compile time, it’s still
pretty easy to check if a class derives from empty_class<T> for
any T. Meanwhile, is_same<empty_class<bigger_class>,
empty_class<biggest_class>> is false, and the compiler
doesn’t need to provide a unique address for adjacent in-
stances. Problem solved!
*** Dumping AST Record Layout

0 | struct bigger_class
0 | struct empty_class<struct bigger_class> (base) (empty)
0 | struct smaller_class m_sc
0 | struct empty_class<struct smaller_class> (base) (empty)
0 | long long[2] m_x

| [sizeof=16, dsize=16, align=8,
| nvsize=16, nvalign=8]

*** Dumping AST Record Layout
0 | struct biggest_class
0 | struct empty_class<struct biggest_class> (base) (empty)
0 | struct bigger_class m_bc
0 | struct empty_class<struct bigger_class> (base) (empty)
0 | struct smaller_class m_sc
0 | struct empty_class<struct smaller_class> (base) (empty)
0 | long long[2] m_x

16 | struct smaller_class m_sc
16 | struct empty_class<struct smaller_class> (base) (empty)
16 | long long[2] m_x

| [sizeof=32, dsize=32, align=8,
| nvsize=32, nvalign=8]

Revisiting the “identity” example above, the assert no
longer compiles because empty_class is a class template, and
if you provide the correct template parameters so that it ac-
cepts the provided addresses, it then complains about com-
paring distinct pointer types. The function, f() nowmust be



a function template, and the two invocations in the example
call two distinct functions, with no possibility of confusing
the identities of the class and its member data.

 Final Thoughts
This kind of problem is one that youmight believe is working
as expected for a years before realizing it’s not quite right. It’s
not (generally) a serious issue, as we’re talking about bytes,
but the lost data is completely useless and wasted in many
cases. I offer the following suggestions:

. If it’s at all reasonable, validate the size of your class with
static_assert. For a class with a lot of data, or some-
thing algorithmic and frequently changing, this can be
tedious and quite unnecessary. For a data class (think,
a UUID class), however, you probably expect a specific
size by design. Validate it.

. Check out things that people tend to add to classes to
adjust the interface — like boost::noncopyable. They
may not be as harmless as they seem.

. Change any “tag” classes in the code, and convert them
to a template when reasonable. Perhaps, too, by using
std::enable_if, the tag is not even needed.



https://en.cppreference.com/w/cpp/types/enable_if

	The Problem
	Just Make It Get Smaller, Please
	A Much Better Answer
	Final Thoughts

